کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل
موضوعات: بدون موضوع لینک ثابت


جستجو




 



 

 

 

 

 

 

 

 

 

 

عنوان

 

فهرست مطالب
فصل اول.. 1
کلیات… 1
1-1-مقدمه. 2
1-2-تعریف مسأله. 3
1-2-1-پساب اسیدی معدنی… 4
1-2-2- منشاء پساب‌های اسیدی معدن.. 4
1-2-3- واکنش‌های اکسیداسیون و تولید اسید.. 6
1-2-4- عوامل موثر بر نرخ اکسید شدن پیریت… 8
1-2-5- اثرات زیست ‌محیطی پساب‌های اسیدی معدن.. 8
1-3-مروری بر پیشینه مطالعات انجام شده. 11
1-4- ضرورت انجام تحقیق… 18
1-5-اهداف تحقیق… 19
1-6-سازماندهی پایان نامه. 19
فصل دوم. 21
سیستم استنتاج فازی-عصبی تطبیقی… 21
2-1-مقدمه. 22
2-2-منطق فازی… 23
2-2-1-تئوری فازی از دیدگاه ریاضی… 23
2-2-2-سیستم استنتاجی فازی… 23
2-2-3-سیستم استنتاجی فازی خالص….. 25
2-2-4-سیستم استنتاج فازی ممدانی… 25
2-2-5-سیستم استنتاج فازی تاکاگی-سوگونو و کانگ…. 26
2-3-شبکه‌های عصبی مصنوعی… 28
2-3-1-آموزش شبکه عصبی مصنوعی… 30
2-4-سیستم استنتاج عصبی-فازی تطبیقی… 30
2-4-1 -ساختار ریاضی انفیس….. 31
2-5-سیستم استنتاجی عصبی-فازی تطبیقی چند خروجی… 35
2-5-1-عملیات آموزش سیستم استنتاج عصبی-فازی تطبیقی چند خروجی… 37
2-5-2-پارتیشن بندی شبکه. 39
2-5-3- خوشه بندی کاهشی… 39
2-5-3- فازی  میانگین – c. 40
2-6-جمع ‌بندی… 41
فصل سوم. 42
معرفی و خصوصیات کلی معدن مس سرچشمه. 42
3-1- مشخصات عمومی معدن مس سرچشمه. 43
3-1-1- موقعیت جغرافیایی و شرایط اقلیمی كانسار پورفیری مس سرچشمه. 43
3-2- تاریخچه معدن مس سرچشمه. 44
3-4- كانی سازی در معدن مس سرچشمه. 45
3-5-مطالعات انجام شده بر روی سد باطله معدن مس سرچشمه. 45
3-5-1- احداث سد باطله. 46
3-5-2-هیدرولوژی منطقه. 47
3-6-باطله‌های معدن مس سرچشمه. 48
3-6-1-مقدمه. 48
3-6-2-سایت معدنی سرچشمه. 50
3-6-3- نمونه برداری و روش‌های صحرایی… 51
3-7-جمع‌بندی… 54
فصل چهارم. 55
مدلسازی و آنالیز نتایج.. 55
4-1-مقدمه. 56
4-2- پیش‌بینی فلزات سنگین در پساب اسیدی معدن با استفاده از مدل  سیستم استنتاج عصبی-فازی تطبیقی چند متغیره. 64
4-2-1-معیارهای ارزیابی عملکرد مدل.. 66
4-3-نتایج حاصل از سیستم استنتاج عصبی-فازی تطبیقی چندخروجی… 66
4-4-رگرسیون خطی… 78
4-4-1-رگرسیون خطی چندگانه. 79
4-5-نتایج حاصل از رگرسیون خطی چندگانه. 80
فصل پنجم.. 87
5-1-نتیجه گیری کلی… 88
5-2-پیشنهادات… 91
منابع.. 92
 

 

 

 

 

 

 

 

 

صفحه

 

 

 

 

 

 

 

 

عنوان

 

فهرست اشکال
 
 
شکل ‏1‑1 -اکسید شدن پیریت و تولید اسید در یک معدن زغال‌سنگ………………………………………………………..6
شکل ‏1‑2-میکروگراف الکترونی از باکتری تیوباسیلوس فرواکسیدان…………………………………………………………….7
شکل ‏1‑3-آلودگی آب‌های سطحی درغرب ویرجینیا…………………………………………………………………………………….9
شکل ‏1‑4-مرگ ماهیان بر اثر تخلیۀ پساب اسیدی معدن حاصل از معادن رومانی در رودخانۀ دانوب……….9
شکل ‏1‑5-آلودگی آب‌های سطحی توسط پساب اسیدی حاصل از معادن زغال سنگ در غرب پنسیلوانیا.10
شکل ‏2‑1-ساختار یک سیستم فازی……………………………………………………………………………………………………………23
شکل ‏2‑2-ساختار سه سیستم استنتاجی فازی……………………………………………………………………………………………24
شکل ‏2‑3-سیستم فازی ممدانی…………………………………………………………………………………………………………………..25
شکل ‏2‑4-سیستم فازی TSK………………………………………………………………………………………………………………………26
شکل ‏2‑5-ساختار یك نرون مصنوعی…………………………………………………………………………………………………………..27
شکل ‏2‑6-ساختار نمونه انفیس در مدل فازی سوگنو………………………………………………………………………………….30
شکل ‏2‑7-ساختار دیگری از انفیس………………………………………………………………………………………………………………33
شکل ‏2‑8-سیستم استنتاجی عصبی-فازی تطبیقی چند خروجی مدل سوگنو مرتبه با یک ورودی و سه خروجی……………………………………………………………………………………………………………………………………………………………36
شکل ‏3‑1-موقعیت جغرافیایی کانسار مس سرچشمه…………………………………………………………………………………..43
شکل ‏3‑2-سد باطله در معدن مس پورفیری سرچشمه……………………………………………………………………………….45
شکل ‏3‑3-محل معدن مس سرچشمه و رودخانه شور…………………………………………………………………………………50
شکل ‏3‑4-محل نمونه‌برداری رودخانه شور…………………………………………………………………………………………………..51
شکل ‏3‑5-محل‌های نمونه برداری و موقعیت معدن مس سرچشمه……………………………………………………………53
شکل ‏4‑1-رسوب سولفات مس و آهن مس سرچشمه…………………………………………………………………………………57
شکل ‏4‑2-رسوب کانی‌های ثانویه سولفات مس و آهن………………………………………………………………………………..57
شکل ‏4‑3-کلوئیدی شدن پساب و انحلال سولفیدها……………………………………………………………………………………58
شکل ‏4‑4-کلوئیدی شدن پساب و انحلال سولفات در پساب فرعی…………………………………………………………….58
شکل ‏4‑5-پساب خروجی از معدن، کدر و حاوی ذرات معلق آهن………………………………………………………………60
شکل ‏4‑6-رسوبات بی‌شکل پوشاننده پساب و رسوبات آهن در حواشی آن…………………………………………………60
شکل ‏4‑7-روند تغییرات غلظت(ppm)آلاینده‌های فلزی از بالادست به پایین دست روخانه شور……………….62
شکل ‏4‑8 -توابع عضویت به دست آمده توسط مدل MANFIS-GP………………………………………………………..68
شکل ‏4‑9-توابع عضویت به دست آمده توسط مدل MANFIS-SCM………………………………………………………69
شکل ‏4‑10-توابع عضویت به دست آمده توسط مدل MANFIS-FCM……………………………………………………70
شکل ‏4‑11-همبستگی بین مقادیر اندازه گیری شده و پیش‌بینی شده مس توسط مدل  MANFIS-SCM الف) مجموعه داده‌های آموزشی، ب) مجموعه داده آزمون……………………………………………………………………………72
شکل ‏4‑12-همبستگی بین مقادیر اندازه گیری شده و پیش‌بینی شده آهن توسط مدل  MANFIS-SCM الف) مجموعه داده‌های آموزشی، ب) مجموعه داده آزمون……………………………………………………………………………73
شکل ‏4‑13-همبستگی بین مقادیر اندازه گیری شده و پیش‌بینی شده منگنز توسط مدل  MANFIS-SCM الف) مجموعه داده‌های آموزشی، ب) مجموعه داده آزمون………………………………………………………………..75
شکل ‏4‑14-همبستگی بین مقادیر اندازه گیری شده و پیش‌بینی شده روی توسط مدل  MANFIS-SCM الف) مجموعه داده‌های آموزشی، ب) مجموعه داده آزمون……………………………………………………………………………75
شکل ‏4‑15-مقایسه بین اندازه گیری و پیش‌بینی شده Cu با استفاده از مدل MANFIS-SCM برای مجموعه داده‌های آزمون………………………………………………………………………………………………………………………………..76
شکل ‏4‑16-مقایسه بین اندازه گیری و پیش‌بینی شده Fe با استفاده از مدل MANFIS-SCM برای مجموعه داده‌های آزمون………………………………………………………………………………………………………………………………..76
شکل ‏4‑17-مقایسه بین اندازه گیری و پیش‌بینی شده Mn با استفاده از مدل MANFIS-SCM برای مجموعه داده‌های آزمون………………………………………………………………………………………………………………………………77
شکل ‏4‑18-مقایسه بین اندازه گیری و پیش‌بینی شده Zn با استفاده از مدل MANFIS-SCM برای مجموعه داده‌های آزمون……………………………………………………………………………………………………………………………..77
شکل 4‑19 -همبستگی بین غلظت فلزات سنگین اندازه‌گیری شده و پیشبینی شده با استفاده از MLR برای داده‌های آزمون و آموزش……………………………………………………………………………………………………………………85
 

 

 

 

 

 

 

 

 

صفحه

 

 

 

 

 

 

 

مقالات و پایان نامه ارشد

 

 

عنوان

 

فهرست جداول
 
 
جدول ‏3‑1-ماکزیمم و مینیمم پارامترهای فیزیکی و شیمیایی غلظت فلزات سنگین رودخانه شور 53
جدول ‏3‑2-محل و موقعیت جغرافیایی ایستگاه‌های نمونه‌برداری آب… 53
جدول ‏4‑1-ماکزیمم و مینیمم پارامترهای فیزیکی و شیمیایی غلظت فلزات سنگین رودخانه شور و استاندارد آب(همه نمونه‌ها بر حسبppm) 61
جدول ‏4‑2-ماتریس همبستگی بین غلظت فلزات سنگین و متغییرهای مستقل.. 65
جدول ‏4‑3-خصوصیات مدل‌های MANFIS. 67
جدول ‏4‑4-مقایسه بین نتایج حاصل از سه مدل برای مجموعه داده‌های آزمون.. 71
جدول ‏4‑5-مشخصات آماری از مدل رگرسیون چندگانه. 81

 

 

جدول4-6-مقایسه نتایج بدست آمده از روش MANFIS-SCMو MLR……………………………………………………86

 

 

 
فهرست علائم و نشانه‌ها
 
 
اختصار                             معادل فارسی                                     معادل انگلیسی

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANN شبکه عصبی مصنوعی Artificial Neural Network
AMD پساب اسیدی معدن Acid Mine Drainage
MNN شبکه عصبی مصنوعی مدولار Modular Neural Network
BP شبکه عصبی مصنوعی پس انتشار Back-propagation
MLR رگرسیون خطی چندگانه Multiple linear regression
TDS کل جامد محلول Total dissolved solids
RMS ریشه میانگین مربع خطا Root Mean Square Error
DO غلظت اکسیژن محلول Dissolved oxygen
COD باقی مانده اکسیژن شیمیایی Chemical oxygen demand
BPNN شبکه عصبی مصنوعی پس انتشار Back Propagation Neural Network
GRNN شبکه عصبی مصنوعی رگرسیون عمومی General Regression Neural Network
ANFIS سیستم استنتاج عصبی-فازی تطبیقی Adaptive neuro-fuzzy inference system
FL منطق فازی Fuzzy logic
MF تابع عضویت Membersip Function
TSK
 
سیستم فازی تاکاگی-سوگنو-کانگ Takagi Sugeno Kang FIS
FIS سیستم استنتاج فازی Fuzzy Inference System
LSM روش حداقل مربعات Least square method
MANFIS سیستم استنتاج عصبی-فازی تطبیقی چندخروجی Multi-outputs Adaptive Neuro-fuzzy System
VAF محاسبه واریانس بین دو چیز Variance Account For
GP پارتیشن‌بندی شبکه Grid Partitioning
SCM روش خوشه‌بندی کاهشی Subtractive clustering method
FCM روش فازی میانگین-c Fuzzy C-means method

 

 

 

 

 

موضوعات: بدون موضوع  لینک ثابت
[سه شنبه 1399-10-09] [ 10:42:00 ب.ظ ]




 

فصل اول………………………………………………………………………………………………….. 2

1-1 ضرورت انجام پژوهش…………………………………………………………………………………………..2
 1-2 روش انجام پژوهش………………………………………………………………………………………………3
 1-3 ساختار پایان‌نامه……………………………………………………………………………………………………3
فصل دوم ……………………………………………………………………………………………………….5
2-1 سابقه علمی………………………………………………………………………………………..5
2-2 روش‌های اصلاح شبکه‌مبدل‌های حرارتی………………………………………………………………….8
2-2-1 اصلاح شبکه بوسیله باز‌بینی مستقیم ساختمان آن……………………………………………9
2-2-2 اصلاح شبکه بصورت یک طرح جدید………………………………………………………….9
2-2-3 اصلاح شبکه با استفاده از فن‌آوری پینچ………………………………………………………..9
2-2-4 اصلاح شبکه با استفاده از مدل برنامه‌نویسی ریاضی……………………………………….9
2-3 فن‌آوری پینچ………………………………………………………………………………………………………10
2-3-1 نمودار آبشاری…………………………………………………………………………………………10
2-3-2 منحنی ترکیبی………………………………………………………………………………………….11
2-3-3 منحنی ترکیبی جامع (G.C.C)………………………………………………………………….. 12
2-3-نمودار پیازی………………………………………………………………………………………………13
2-3-5 ΔTmin بهینه……………………………………………………………………………………………13
2-4 اصول پینج…………………………………………………………………………………………………………..14
2-5 مسائل آستانه (Threshhold)…………………………………………………………………………………..16
2-6 انتخاب واحد پشتیبانی………………………………………………………………………………………….17
2-7 کوره­ها……………………………………………………………………………………………………………….18
2-8 هدف­گذاری………………………………………………………………………………………………………..20
2-8-1 تعداد مبدل­های حرارتی……………………………………………………………………………20  
2-8-2 هدف­گذاری سطح……………………………………………………………………………………23
2-8-3 هدف گذاری تعداد پوسته ها……………………………………………………………………..25
2-8-4 هدف­گذاری هزینه اصلی(Capital Cost)……………………………………………………..27
2-8-5 هدف­گذاری هزینه کلی…………………………………………………………………………… 29
2-8-6 هدف­گذاری بر  اساس رابطه هزینه انرژی…………………………………………………..30
2-9 روش‌های هدف­گذاری…………………………………………………………………………………………33
2-9-1 هدف­گذاری به روش α ثابت…………………………………………………………………….33
2-9-2 هدف­گذاری به روش α افزایشی………………………………………………………………..34
2-10 جمع­بندی…………………………………………………………………………………………………………35
فصل سوم ………………………………………………………………………………………………………………………..37
3-1 مقدمه…………………………………………………………………………………………………………………37
3-2 حلقه………………………………………………………………………………………………………………….38
3-3 مسیر………………………………………………………………………………………………………………….39
3-4 درجه آزادی………………………………………………………………………………………………………..39 
3-5 تقسیم جریان……………………………………………………………………………………………………….41
3-6 نظریه مثبت، منفی………………………………………………………………………………………………..41
3-7 هدف­گذاری انرژی………………………………………………………………………………………………42
3-8  روش تخصیص بار حرارتی جریان خارجی……………………………………………………………44
3-8-1 روش مبتنی بر منحنی تركیبی جامع……………………………………………………………..44
3-8-2 قاعده ارزان­ترین جریان خارجی………………………………………………………………….46
3-9 هدف­گذاری سطح………………………………………………………………………………………………..47
3-10 پارامتر بهینه‌سازی……………………………………………………………………………………………….48
3-11 نکات و ترفندهای بهینه‌سازی………………………………………………………………………………49
3-12 بهینه‌سازی و بررسی حالت عملیاتی شبکه…………………………………………………………….50
3-13 عملكرد بهینه و نگهداری از شبكه مبدل­های حرارتی……………………………………………….51
3-13-1 ضریب انتقال حرارت کلی تمییز………………………………………………………………51
3-13-2 ایجاد رسوب در مبدل حرارتی………………………………………………………………..52
3-14 چه مقدار / اگر………………………………………………………………………………………………….52
3-14-1 رخداد………………………………………………………………………………………………….53
3-14-2 وظایف…………………………………………………………………………………………………53
3-15 طراحی شبکه…………………………………………………………………………………………………….55
3-16 اصلاح و بازبینی شبكه………………………………………………………………………………………..57
3-16-1 تشخیص گلوگاه­ها در شبكه مبدل­های حرارتی……………………………………………57
3-17 جمع­بندی………………………………………………………………………………………………………….59
فصل چهارم ……………………………………………………………………………………………………………………..60  
4-1 مقدمه…………………………………………………………………………………………………………………60
4-2 روش­های ساخت در پالایشگاه………………………………………………………………………………61
4-2-1 جریان کلی مواد در پالایشگاه…………………………………………………………………….63
4-3 ترکیب نفت خام………………………………………………………………………………………………….65
4-4 تقطیر………………………………………………………………………………………………………………….66
04-4-1 کلیاتی در مورد تقطیر……………………………………………………………………………..66
4-4-2 عملیات تقطیر………………………………………………………………………………………….68
4-4-3 شرح تقطیر جزء به جزء…………………………………………………………………………….71
4-5 تقطیر نفت خام……………………………………………………………………………………………………71
4-5-1 ستون تقطیر اتمسفری……………………………………………………………………………….71
4-5-2      ستون تقطیر خلاء………………………………………………………………………………….73
4-6 فرآورده‌های تقطیر………………………………………………………………………………………………..74
4-6-1 مهم­ترین فرآورده‌های واحد تقطیر نفت خام………………………………………………….74
4-7  شبیه‌سازی واحد تقطیر ……………………………………………………………………………………….76
4-7-1 نرم‌افزار Aspen Engineering……………………………………………………………………..76
4-7-2 معادلات ترمودینامیکی………………………………………………………………………………78
4-7-3 شبیه‌سازی واحد تقطیر آبادان ……………………………………………………………………78
4-7-4 توزیع ترکیبات مختلف گوگردی در بنزین…………………………………………………..79
4-7-5 محیط شبیه‌سازی …………………………………………………………………………………….80
4-7-6 نحوه اجرای برج تقطیر……………………………………………………………………………..83
4-7-7 توضیح فرایند تقطیر در خلا………………………………………………………………………85
4-7-8 جمع­بندی……………………………………………………………………………………………….85
فصل پنجم ……………………………………………………………………………………………………………………….86
5-1 مقدمه…………………………………………………………………………………………………………………87
5-2 شبیه­سازی واحد…………………………………………………………………………………………………..87
5-3 استخراج داده‌ها از شبیه‌سازی و هدف‌گذاری…………………………………………………………….87
5 -3-1 شبیه‌سازی منابع سرد و گرم خارجی در محیط Aspen HX-NET…………………89
5-4 ترسیم شبکه‌مبدل‌های حرارتی……………………………………………………………………………….89
5-5 هدف‌گذاری………………………………………………………………………………………………………92
5-5-1 تعیین ΔTMIN بهینه………………………………………………………………………………..92
5-5-2 برآورد هزینه سرمایه‌گذاری……………………………………………………………………..92
5-5-3 فرضیات هدف‌گذاری…………………………………………………………………………….93
5-6 بررسی نتایج هدف‌گذاری شده……………………………………………………………………………..94
5-7 اصلاح و بازبینی شبکه…………………………………………………………………………………………96
5-8 راهکار اقتصادی برای شبکه‌مبدل‌های حرارتی واحد 80………………………………………….100
5-9 نتیجه‌گیری…………………………………………………………………………………………………….101
5-10 پیشنهاد‌ها………………………………………………………………………………………………………..103
مراجع…………………………………………………………………………………………………………………….104
پیوست­ها………………………………………………………………………………………………………………..107
1                    فصل اول
1-1            ضرورت انجام پژوهش

مقالات و پایان نامه ارشد

 


با افزایش قیمت حامل‌های انرژی و بحران انرژی از آغاز دهه‌ی هفتاد میلادی، همچنین مصرف بالای انرژی در بخش صنعت، صرفه‌جویی انرژی در صنایع به خصوص صنایع فرآیندی و شیمیایی امری ضروری است. همچنین با توجه به مصرف بالای بنزین و بحث خودکفایی در تولید بنزین توسط پالایشگاه‌های کشور، پیشرفت و بهینه سازی واحدهای بنزین سازی پالایشگاه‌های نفت مورد توجه قرار گرفته است. این امر منجر به ابداع روش‌های مختلفی برای صرفه‌جویی در مصرف انرژی و همچنین استفاده مجدد از انرژی‌های تلف شده در یک فرایند گردید. افزایش روز افزون قیمت سوخت, كاهش منابع سوخت فسیلی و لزوم حفظ و نگهداری محیط زیست عواملی هستند كه كه اهمیت بازیافت بهینه انرژی حرارتی و جلوگیری از اتلاف انرژی را در صنایع مختلف, نشان می دهد. امروزه مصرف بهینه انرژی به عنوان یكی از شاخص ها عمده در ارزیابی توسعه یافتگی جوامع, مطرح گردیده است. شدت بالای مصرف انرژی در فرآیندهای شیمیایی، باعث افزایش هزینه‌های تولید و بهره‌برداری و نیز كاهش بازده استحصال مواد در محصولات صنعتی می گردد. همچنین با توجه به اهمیت طراحی شبکه‌ی مبدل‌های حرارتی به عنوان یکی از بخش‌های مهم طراحی فرآیندها، شبکه‌ی مبدل‌های حرارتی این واحد با دیدگاه انتگراسیون حرارتی بررسی گردیده است. این بررسی با دو رویکرد در قالب اصلاح شبکه‌ی موجود و طراحی مجدد شبکه انجام گرفته است. در طراحی مجدد شبکه، هدف کمینه‌کردن سطح انتقال حرارت و یا هزینه‌ی سالیانه کلی آن واحد می‌باشد. درحالی که هدف از بازبینی و اصلاح شبکه موجود کمینه‌کردن دوره بازگشت سرمایه بعد از اعمال تغییرات انجام شده در شبکه می باشد. دو روش رایج در طراحی و اصلاح شبکه‌ی مبدل‌های حرارتی روش طراحی پینچ و روش برنامه‌نویسی ریاضی می‌باشند .حالت عملیاتی شبکه نیز جهت بررسی کارآیی طرح، هنگام تغییر در شرایط عملیاتی، مورد بررسی قرار می‌گیرد. کاهش ضریب کلی انتقال حرارت در اثر ایجاد رسوب تغییر در دمای ورودی یا دبی جرمی جریان‌های فرآیندی از جمله پارامترهای عملیاتی هستند که اثر آنها را در شبکه بررسی میگردد. در این پایان‌نامه از ترکیب دو روش بهینه‌سازی ریاضی و روش پینچ، که براساس تحلیل ترمودینامیکی و طراحی کاربردی می‌باشند، به منظور طراحی مجدد و اصلاح شبکه استفاده شده است.فناوری پینچ همگام با توسعه‌ی اولیه‌اش در دانشگاه‌ها، در فرآیندهای صنعتی نیز به کار گرفته شده‌است و امروزه از آن به عنوان یک فناوری کامل در مراکز دانشگاهی و صنعتی یاد می‌شود. تحلیل کارآمد جهت بررسی عملکرد سیستم‌های انرژی و واحدهای فرآیندی است. با تکیه بر نتایج انجام گرفته بر اساس این تحلیل، نقاط بحرانی فرآیند شناسایی و جهت بهینه‌سازی انرژی واحد با اصلاح این نقاط بحرانی، حداکثر نتایج مطلوب حاصل خواهد شد.
تحلیل پینچ علاوه بر تعیین مبدل‌های حرارتی خطاکار، راهکار و شبکه مبدل‌های حرارتی مناسب را پیشنهاد می‌دهد. در این بین بهینه‌سازی انرژی در واحد 80  مورد بررسی قرار گرفته است.
1-2              روش انجام پژوهش:
در پایا‌ن‌‌نامه ابتدا واحد 80 برج تقطیر پالایشگاه آبادان توسط نرم افزار Aspen hysys refinery شبیه‌سازی می شود و نتایج شبیه‌سازی با مقادیر واقعی مقایسه می‌شود. در مرحله بعد نسخه شبیه‌سازی شده را به نرم‌افزار Aspen hysys Analyzer V7.2 ( همان نرم‌افزار HX-NET می‌باشد) لینک کرده و در محیط این نرم افزار شبکه مبدل‌های حرارتی ترسیم می‌شود. با ارزیابی شبکه فوق به کمک فناوری پینچ، امکان اصلاح شبکه بررسی شده و پیشنهاد‌ها لازم ارائه می‌شود. روش مورد استفاده در نرم افزار Aspen hysys Analyzer V7.2 تلفیقی از دو روش ریاضی و روش پینچ است. دو روش طراحی پینچ و روش برنامه نویسی ریاضی از پرکاربردترین روش‌ها جهت اصلاح شبکه موجود می‌باشند.
1-3            ساختار پایان‌نامه:
مطالعات و تحلیل‌های انجام شده در این پژوهش در قالب 5 فصل به شرح زیر ارائه شده است:
در فصل اول پس از مقدمه کوتاهی درباره اهمیت بهینه‌سازی انرژی واحد 80، روش انجام شده در این مطالعه برای کاهش مصرف انرژی و اصلاح شبکه مبدل‌های حرارتی این واحد بیان شده است.
در فصل دوم  پیشینه روش تحلیل پینچ و تعاریف اولیه با اشاره به تاریخچه انجام مطالعات  این تحلیل و به عنوان معیاری برای ارزیابی سیستم‌های انرژی و تعیین نقاط بحرانی فرآیند بیان شده است.
در فصل سوم روش تحلیل پینچ در انتگراسیون فرایند‌ها، هدف‌گذاری‌ها و اصول و معیارهای روش پینچ در اصلاح شبکه مبدل‌های حرارتی و بهینه‌سازی فرایند‌ها با استفاده از فناوری پینچ بیان شده است.
در فصل چهارم فرآیند تولید نفت خام برای آشنایی بیشتر توضیح داده شده است. در این فصل پس از بیان تاریخچه توسعه این واحد پالایشگاهی، انواع فرآیندهای و مشخصات خوراک و محصول این واحد بیان شده است .
در فصل پنجم نتایج تحلیل‌های پینچ و سایر مطالعات انجام شده در واحد 80 آبادان آورده شده است و در ادامه فصل، اصلاح شبکه مبدل‌های حرارتی واحد بیان شده است و در پایان فصل با انجام مطالعات اقتصادی، نتیجه‌گیری‌ این پژوهش و پیشنهادهایی برای انجام کارها و مطالعات آتی بیان شده است.
2     فصل دوم
2-1           سابقه علمی
در سال 1970 که بحران انرژی آغاز شد مهندسان طراح و صاحبان صنایع بویژه شرکت‌های صنایع  فرایند‌های شیمیایی به صرفه‌جویی در مصرف انرژی اندیشیدند که به ابداع روش‌های گوناگون برای صرفه‌جویی در مصرف انرژی در طی این سال‌ها منجر شد. همچنین به موازات آن دریافتند که باید از انرژی‌هایی که در یک فرایند تلف می‌شوند نیز دوباره استفاده کنند. (انرژی تلف شده انرژیی می‌باشد که در یک فرایند تولید می‌شود ولی دوباره به محیط دور ریخته می‌شود اگرچه هنوز می‌توان از ان دوباره استفاده نمود).
کیفیت لازم برای انرژی مقدار نیست بلکه ارزش آن می‌باشد. این استراتژی که چگونه این انرژی بازیافت شود به دمای آن و مسائل اقتصادی بستگی دارد.در این خصوص شیوه‌های مختلفی برای استفاده مجدد از این انرژی‌های هدر رفته در کارخانه‌ها ارائه گردیده است که به بازیافت حرارتی معروف شده اند.این فعالیت‌ها تا کنون به ابداع روش‌های متعددی در طراحی منجر شده‌است.
اولین روش تجربی با استفاده از قواعد تجربی و طی چند مرحله تکاملی آرایش مناسبی برای شبکه بدست می‌آید.به عنوان نمونه توصیه می‌شود که در صورت امکان گرمترین جریان گرم موجود در فرایند انرژی خود را با جریان سردی که دمای نهایی آن از دیگر جریان‌های سرد بیشتر باشد مبادله نماید.این روش علی‌رغم سادگی روش قابل اطمینانی محسوب نمی‌شود ودر یک واحد شیمیایی پیچیده ما را به بهترین طرح ممکن رهنمون نخواهد ساخت.
دومین روش، روش ریاضی، که قدیمیترین روش محسوب می‌شود ابتدا تمام آرایش های ممکن برای شبکه تبادل‌گرهای حرارتی تعریف شده و به وسیله‌ی محاسبات ریاضی پیچیده و زمان‌گیر بازده واحد در هر حالت ارزیابی می‌شود و به تدریج گزینه‌های نامناسب حذف می‌گردند تا به شبکه منتخب نهایی برسیم. در این روش تعداد گزینه‌ها و حالات مختلفی که برای هر مسئله می‌بایست در نظر گرفت بسیار زیاد خواهند بود و در مسئله‌ای نظیر شبکه تبادل‌گر‌های حرارتی یک پالایشگاه به ارقامی بیش از 1018 لحاظ میرسد. بنابرین این مجموعه از ارزیابی‌ها به یک کامپیوتر بزرگ و صرف زمان زیادی نیاز دارد به همین لحاظ در یک واحد صنعتی با ابعاد و پیچیدگی‌های یک پالایشگاه استفاده از این روش با محدودیت مواجه خواهد شد [16].

موضوعات: بدون موضوع  لینک ثابت
 [ 10:41:00 ب.ظ ]




 

 

 

18تا36 ساعت بعد از MI  میوکارد به صورت قرمز کم رنگ در می آید که به خاطر به دام افتادن گلبول های قرمز می باشد. این تغییرات تا 48 ساعت نیز ممکن است باقی باشد. بعداز 48 ساعت به واسطه عملکرد نوتروفیل به صورت زرد و خاکستری در می آید .

 

 

8 تا 10 روز بعداز MI منطقه انفارکته نازک می شود و بافت های نکروز توسط منونوکلئوزها از محیط برداشته می شوند و سپس به تدریج تشکیل بافت فیبروزه آغاز می گردد که ممکن است تا 2 الی 3 ماه طول بکشد. (هفته دوم از نظرپارگی قلب هفته خطرناکی است) چون بافت نکروز تا حدودی از منطقه برداشته شده وبافت فیبروزه هنوز تشکیل نشده از طرف دیگر بیمار نیز فکر می کند خوب شده و اصرار به ترخیص و برگشت به فعالیت های عادی اش را دارد.(4) در انفارکتوس میوکارد سه ناحیه مشخص وجود دارد . مرکز ناحیه که خونرسانی آن کاملاً قطع شده است ، به ناحیه انفارکته یا نکروز معروف است . اطراف این ناحیه که با کاهش خونرسانی و هیپوکسمی مواجه است ، به ناحیه  پنومبرا[14] یا هیپوکسیک معروف است . بیرونی ترین قسمت ناحیه آسیب دیده ، به ناحیه ایسکمیک معروف است. با مداخلات درمانی به موقع ، امکان زنده نگه داشتن نواحی هیپوکسیک و ایسکمیک وجود دارد.

 

 

 

 

 

 

 

 

شکل 1-1 : سه ناحیه مشخص انفارکتوس میوکارد و همزمان تغییرات الکتروکاردیوگافی مربوط به هر مرحله از تغییرات بافت میوکارد. ایسکمی به علت تغییر رپولاریزاسیون ، باعث معکوس شدن موج T می شود . آسیب عضله قلب باعث بالا رفتن قطعه ST ، و امواج T بلند و معکوس می گردد . بعداً ، بعلت عدم وجود جریان دپولاریزاسیون از بافت نکروزه و جریانهای مخالف  از قسمتهای دیگر قلب ، موج Q بزرگ ایجاد می شود . (96)

 

در انفارکتوس ترنس مورال در ناحیه نکروزه ، در عرض چند هفته ، بافت اسکار و همبند تشکیل می شود . این ناحیه در هنگام سیستول منقبض نمی شود و اگر وسعت آن زیاد باشد ، در هنگام انقباض بطن و افزایش فشار در داخل بطن به بیرون برآمده می شود که به آنوریسم بطنی  معروف است(شکل1-1). (12و96)                                              .

 

 

انفارکتوس میوکارد ، مراحل موقت زیر را پشت سر می گذارد :

 

 

1) حاد (چند ساعت نخست تا روز هفتم)     2) التیام (روز هفتم تا بیست وهشتم)               3) نقاهت (روز بیست و نهم به بعد) .

 

 

در هنگام ارزیابی نتایج تست های آزمایشگاهی ، باید این مراحل سه گانه مد نظر باشند . تست های آزمایشگاهی با ارزش جهت تشخیص انفارکتوس میوکارد به چهار گروه تقسیم می شوند:

 

 

 

    • الکتروکاردیوگرافی (ECG)

 

پایان نامه و مقاله

 

 

    • نشانگر های سرمی قلب

 

 

موضوعات: بدون موضوع  لینک ثابت
 [ 10:41:00 ب.ظ ]




 

 

 

 

 

 

 

فصل سوم: مواد و روش انجام آزمایش‌ها                                                                                                                               28
3-1 مواد مورد استفاده……………………………………………………………………………………………………………………………….. 28
3-1-1 پارچه پنبه-پلی‌استر و پنبه خالص……………………………………………………………….. 28
3-1-2 کربنات سدیم………………………………………………………………………………………………………………………………… 29
3-1-3 آنزیمهای مورد استفاده در هیدرولیز آنزیمی…………………………………………………………………………………………. 29
3-1-4 مخمر استفاده شده  در تخمیر…………………………………………………………………………………………………………….. 29
3-1-5 کیت گلوکز…………………………………………………………………………………………………………………………………… 29
3-1-6 سایر مواد مورد نیاز…………………………………………………………………………………………………………………………. 29
3-2 مخلوط میکروبی…………………………………………………………………………………………………………………………………. 29
3-3 تجهیزات به کار رفته…………………………………………………………………………………………………………………………….. 30
3-3-1 حمام روغن…………………………………………………………………………………………………………………………………… 30
3-3-2 حمام آب……………………………………………………………………………………………………………………………………… 30
3-3-3 اتوکلاو………………………………………………………………………………………………………………………………………… 30
3-3-4 کوره……………………………………………………………………………………………………………………………………………. 30
3-3-5 آون…………………………………………………………………………………………………………………………………………….. 30
3-3-6 راکتور…………………………………………………………………………………………………………………………………………. 30
3-3-7 شیکر انکوباتور………………………………………………………………………………………………………………………………. 30
3-3-8 سانتریفوژ………………………………………………………………………………………………………………………………………. 31
3-3-9 اسپکتروفوتومتر………………………………………………………………………………………………………………………………. 31
3-3-10 دستگاه کروماتوگرافی گازی…………………………………………………………………………………………………………… 31
3-3-11……… دستگاه کروماتوگرافی مایع با بازده بالا                                     31
3-3-12……… سایر تجهیزات مورد نیاز……………………………………………………………………… 32
3-4 روش انجام آزمایش‌ها…………………………………………………………………………………………………………………………. 32
3-4-1 تعیین مقدار جامدات کل و جامدات فرار……………………………………………….. 32
3-4-2 آنالیز ترکیب‌ها……………………………………………………………………………………………………….. 33
3-4-3 ……… عملیات پیش‌فرآوری……………………………………………………………………………………… 33
3-4-4 آزمایش تولید بیوگاز در سیستم ناپیوسته…………………………………………….. 34
3-4-5 اندازه‌گیری و آنالیز بیوگاز تولید شده…………………………………………….. 35
3-4-6 هیدرولیز آنزیمی…………………………………………………………………………………………………….. 36
3-4-7 ……… تعیین میزان قند آزاد شده از هیدرولیز آنزیمی                   36
3-4-8 تخمیر…………………………………………………………………………………………………………………………………………… 37
3-4-9 ظرفیت جذب آب…………………………………………………………………………………………………………………………… 37
3-4-10 ……. بررسی ساختار ترکیب‌ها…………………………………………………………………………… 37

 

 

 

 

 

 

 

 

 

 

فصل چهارم: ارائه و تحلیل نتایج                                                                           Error! Bookmark not defined.
4-1 مشخصات مخلوط میکروبی…………………………………………………………………………………………………………………… 38
4-2 پیش‌فرآوری………………………………………………………………………………………………………………………………………… 39
4-2-1 ……… مقدار جامدات کل و جامدات فرار پنبه و پارچه                      39
4-2-2 ……… بررسی تغییرات سطح پنبه در اثر پیش‌فرآوری با استفاده از تصاویر میکروسکوپ الکترونی رویشی…………………………………………………………………………………………….. 40
4-2-3 نتایج حاصل از FTIR و بررسی بلورینگی و ساختار سلولز………………………………………………………………………. 42

 

 

 

 

 

 

 

 

نه

 

4-2-4 ……… نتایج میزان جذب آب نمونه ها………………………………………………………… 44
4-3 ترکیب درصد فاز جامد و مایع بدست‌آمده‌از پیش‌فرآوری…………………………………………………………………………. 46
4-3-1 موازنه جرم کلی فرآیند……………………………………………………………………………………….. 46
4-3-2 ……… ترکیبات محلول حاصل از پیش‌فرآوری……………………………………………… 46
4-3-3 ترکیبات جامد باقی‌مانده از پیش‌فرآوری……………………………………………….. 46
4-3-4 ……… بررسی ساختار پلی‌استر…………………………………………………………………………… 47
4-4 تولید بیوگاز……………………………………………………………………………………………………………………………………….. 48
4-4-1 ……… مقادیر متان حاصل از هضم بی‌هوازی……………………………………………… 48
4-4-2 کیفیت بیوگاز تولیدی………………………………………………………………………………………….. 52
4-5 نتایج تولید اتانول…………………………………………………………………………………………………………………………………. 53
4-5-1 ……… نتایج حاصل از هیدرولیز آنزیمی…………………………………………………… 53
4-5-2 ……… نتایج حاصل از تخمیر……………………………………………………………………………… 55

 

 

 

 

 

 

 

 

 

 

فصل پنجم:نتیجه گیری و ارائه پیشنهادات
5-1 مقدمه………………………………………………………………………………………………………………………………………………… 57
5-2 نتایج کلی حاصل از تحقیق……………………………………………………………………………………………………………………. 57
5-3 پیشنهاد ها…………………………………………………………………………………………………………………………………………… 59
مراجع…………………………………………. 60
 

 

 

 

 

 

 

 

 

 

 

 
فهرست شکل‌ها
 
 
عنوان…………………………………………. صفحه
 
شکل ‏1‑1-مراحل انجام این پروژه 4
شکل ‏2‑1-مراحل کلی تولید بیوگاز 9
شکل ‏2‑2-روند کلی مدیریت ضایعات نساجی 13
شکل ‏2‑3- نمودار طبقه بندی الیاف 14
شکل ‏2‑4- ساختمان شیمیایی پلی‌استرهای مورد استفاده در تهیه لیف 16
شکل ‏2‑5-مکانیزم هیدرولیز قلیایی پلی‌استر 17
شکل ‏2‑6- گیاه پنبه 18
شکل ‏2‑7- تصویر سطح مقطع طولی و عرضی الیاف پنبه 19
شکل ‏2‑8- ساختار لیف پنبه 19
شکل ‏2‑9- شمایی از پیوند هیدروژنی و اتصالات (1→4) بتا گلوکوسایدی 21
شکل ‏2‑10-ساختار سلولز 22
شکل ‏2‑11- واحد تکرارشونده تشکیل‌دهنده سلولز 22
شکل ‏3‑1- تصویر پارچه و پنبه مورد استفاده در پیش‌فرآوری قلیایی 28
شکل ‏3‑2- طراحی آزمایش به شکل فاکتوریل کامل برای پیش‌فرآوری قلیایی 34
شکل ‏3‑3-منحنی برازش خطی استاندارد متان و CO2 35
شکل ‏4‑1-تصویر SEM از نمونه  پنبه خام  با بزرگنمایی 500 و 1000 40
شکل ‏4‑2-تصویر SEM از نمونه پنبه پیش‌فرآوری شده 41
شکل ‏4‑3-تصویر SEM از نمونه الیاف پنبه موجود در پارچه پنبه-پلی‌استر 42
شکل ‏4‑4- تصویر SEM از نمونه الیاف پنبه باقیمانده از پارچه پنبه-پلی‌استر پیش‌فرآوری شده 41
شکل ‏4‑5- نمودار جذب بر حسب عدد طول موج حاصل از آنالیز FTIR نمونه‌های پنبه 42
شکل ‏4‑6- نمودار جذب حاصل از آنالیز FTIR نمونه‌های پلی‌استر 47
شکل ‏4‑7-نمودار میله‌ای تجمعی میزان تولید متان از نمونه پارچه 49
شکل ‏4‑8-نمودار میله‌ای تجمعی میزان تولید متان از نمونه پنبه 50
شکل ‏4‑9-نمودار  میله ای تجمعی تولید متان نمونه های پارچه، پنبه و نمونه ویسکوز 50
شکل ‏4‑10-نمودار میزان تجمعی متان تولیدی از نمونه پارچه 51
شکل ‏4‑11-نمودار میزان تجمعی متان تولیدی از نمونه پنبه 51
شکل ‏4‑12- بازده هیدرولیز آنزیمی نمونه‌های پیش‌فرآوری شده پارچه 63
شکل ‏4‑13- بازده هیدرولیز آنزیمی نمونه‌های پنبه 63
شکل ‏4‑14- بازده اتانول حاصل از تخمیر نمونه‌های پارچه و پنبه 56

 

 

 

 

مقالات و پایان نامه ارشد

 

 

 

 

 

یازده

 

 
فهرست جداول
 
عنوان…………………………………………. صفحه
 
جدول ‏2‑1- جدول گروه‌بندی حلال‌های سلولز[52] 23
جدول ‎4‑1-غلظت و درصد جامدات کل و فرار مخلوط میکروبی.. 39
جدول ‎4‑2-درصد جامدات کل و جامدات فرار مربوط به پنبه و پارچه پیش‌فرآوری شده و خام. 39
جدول ‎4‑3- میزان جذب بدست‌آمده از نمودار FTIR مربوط به گروه‌های عاملی مختلف…. 43
جدول ‎4‑4 شاخص بلورینگی نمونه‌های پیش‌فرآوری شده و پیش‌فرآوری نشده -. 44
جدول ‎4‑5- ظرفیت جذب آب مربوط به پنبه پیش‌فرآوری شده و خام. 45
جدول ‎4‑6- ظرفیت جذب آب مربوط به پارچه پیش‌فرآوری شده و خام. 45
جدول ‎4‑7- نتایج حاصل از آنالیز FTIR نمونه‌های پلی‌استر. 47
جدول ‎4‑8- نسبت‌های جذبی نمونه‌ِ‌‌های  پلی‌استر. 48
جدول ‎4‑9- کیفیت بیوگاز تولیدی از پارچه، پنبه و نمونه ویسکوز. 52
جدول ‎4‑10- غلظت اتانول تولیدی پس از 24 ساعت تخمیر پارچه و پنبه پیش‌فرآوری شده و نشده. 55

 

 

 

 

 

 

 

 

دوازده

 

 

1        فصل اول

 

 

فصل اول: مقدمه

 

 

1-1              اهمیت پروژه

 

 

بشر از هزاران سال پیش از میلاد مسیح با اهداف گوناگونی از الیاف نساجی استفاده می‌کند. گرچه تاریخچه مستندی از تکامل صنعت نساجی در دست نیست اما در ابتدا الیاف نساجی برای حمل مواد غذایی و در تهیه حصیر به عنوان سرپناه به‌کار می رفتند. در مراحل بعدی تکامل، الیاف نساجی به عنوان البسه مورد استفاده قرار‌گرفتند و امروزه در زمینه‌های گوناگونی چون پوشاک، وسایل خانه و صنایع کاربرد دارند[1].
به دلیل افزایش جمعیت و ارتقاء سطح استانداردهای زندگی مصرف الیاف[1] در چند دهه اخیر به شدت افزایش یافته است. به طوری که در سال 2012 حجم تولیدات نساجی با 9/1 % افزایش به 5/88 میلیون تن رسید.گرچه ممکن است این الیاف پس از پایان طول عمر به نحوی دوباره در غالب محصولی دیگر مورد استفاده قرار گیرند، اما در نهایت دیر یا زود به عنوان زباله دور ریخته می‌شوند و الیاف جدید جایگزین الیاف فرسوده و کهنه می شوند]2و3[.
تولید بیشتر به معنی مواد پسماند بیشتر، و همچنین اثرات زیست‌محیطی مخرب‌تر است. امروزه مواد پسماند نساجی[2] عمدتا توسط: استفاده مجدد(کالاهای نساجی دست دوم)[3]، استفاده مجدد در تولیدات(به عنوان ماده پرکنندهو استفاده در سایر بخش‌های صنعت نساجی)[4]، بازیافت[5](پلی استر)، تهیه کود کمپوست، دفن و یا سوزاندن [6]مدیریت می‌شوند. برخی از کارشناسان روش سوزاندن را برای تبدیل مواد پسماند به انرژی پیشنهاد می کنند، اما این روش با آزادسازی مواد سمی چون دیوکسین‌ها[7]، فلزات سنگین، اسید، گاز و ذرات گرد و غبار همراه است که همگی برای سلامت انسان و محیط زیست مضر هستند. همچنین سوزاندن مواد پسماند نیاز به تجهیزات پیشرفته دارد و حذف کامل مواد خطرناک نیز غیر ممکن است. دفن مواد پسماند به سبب ایجاد گازهای سمی آلوده کننده محیط زیست و هزینه بالایی که دربر دارد، آخرین و ناکارآمدترین راهکار جهت دفع مواد پسماند نساجی است[2]. بیش از 90%  الیاف نساجی قابل بازیافت اند که یکی از راهکارهای دوستدار محیط زیست جهت دفع مواد پسماند نساجی است. اما فقدان روش مقرون به صرفه بازیافت در مقیاس وسیع و همچنین تنوع زیاد الیاف و رنگ های به کار رفته در پارچه از جمله محدودیت های این روش محسوب می شوند[3].
به دلیل نگرانی های اقتصادی و زیست محیطی در چند دهه اخیر تحقیقات بسیاری جهت یافتن منابع انرژی تجدید پذیر قابل جایگزینی با سوخت های فسیلی صورت گرفته است. بیوگاز یکی از سوخت های زیستی است که از طریق هضم بی‌هوازی[8] بسترهای آلی بدست می‌آید و می‌تواند در تولید حرارت و نیرو جایگزین مناسبی برای سوخت‌های فسیلی باشد یا حتی به عنوان سوخت وسایط نقلیه گازسوز مورد استفاده قرار گیرد. این سوخت بیولوژیک مزایای فراوانی از جمله قابلیت تجدیدپذیری، کاهش آزادسازی گازهای گلخانه‌ای[9] و تخفیف گرم شدن زمین در اثراین گازها، کاهش وابستگی به سوخت‌های فسیلی، انعطاف‌پذیری در مصرف نهایی و استفاده از مواد پسماند به عنوان ماده اولیه به‌همراه دارد[4].
حدود 6/31 % از الیاف تولیدی نساجی را الیاف پنبه ای[10] تشکیل می دهند. الیاف جامدهای غنی از سلولز هستند که می توانند به عنوان خوراک در فرآیند هضم بی‌هوازی مورد استفاده قرار گیرند. با این وجود، تولید مناسب بیوگاز از مواد پسماند نساجی نیازمند توسعه فرآیند مناسب می‌باشد[5].
اگر مواد پسماند پنبه‌ای به طور مستقیم در فرآیند بیوگاز به عنوان خوراک استفاده شود به بازده تولید متان مطلوبی بدست نمی‌آید. بنابراین جهت افزایش بازده لازم است که فرآیند‌های مقدماتی پیش‌فرآوری[11] روی مواد پسماند صورت گیرد[6].
به کمک انجام عملیات پیش‌فرآوری مناسب بر روی مواد پسماند نساجی می‌توان به اهدافی چون تشکیل ساختاری سلولزی با بلورینگی کمتر، کاهش ناخالصی‌های موجود در کالا و همچنین افزایش سطح در دسترس سوبسترا دست یافت[7].

 

 

1-2               هدف

 

 

در این تحقیق پیش‌فرآوری کربنات سدیم جهت بهبود تولید بیوگاز از پارچه پنبه-پلی‌استر به عنوان هدف اصلی مورد نظر قرارگرفت و شرایط بهینه تولید بیوگاز حاصل گردید. نمونه پنبه‌ای جهت مقایسه تحت شرایط دمایی و غلظتی مشابه پارچه پنبه-پلی‌استر پیش‌فراوری شد. بررسی میزان بهبود تولید اتانول و افزایش سطح در دسترس آنزیمی نمونه‌های پنبه و پارچه در اثر اعمال پیش‌فرآوری از اهداف فرعی پروژه بود. بررسی میزان جداسازی جزء پنبه از پلی‌استر در عملیات پیش‌فرآوری در دمای 150درجه سانتی‌گراد و غلظت 5/0 مولار نیز از اهداف فرعی پروژه بود. نوآوری این پروژه اثر محلول قلیایی بر کاهش بلورینگی و ناخالصی جزء پنبه‌ای و همچنین هیدرولیز همزمان بیش از 97 درصد بخش پلی‌استری در دمای 150 درجه است. مراحل انجام کار در شکل ‏1‑1 ملاحظه می‌شود.

 

 

 

 

 

 

 

 

پنبه

 

 

 

 

 

 

 

 

پارچه

 

 

 

 

 

 

 

 

پیش‌فرآوری

 

 

 

 

 

 

 

 

 تولید بیوگاز

 

 

 

 

 

 

 

 

 هیدرولیز آنزیمی

 

 

 

 

 

 

 

موضوعات: بدون موضوع  لینک ثابت
 [ 10:40:00 ب.ظ ]




 

 

 

 

 

 

 

 

1

 

 

چکیده……………………………………………………………………………………………

 

 

 

 

 

 

 

۲

 

 

مروری بر منابع…………………………………………………………….

 

 

فصل اول

 

 

 

 

۳

 

 

مقدمه…………………………………………………………………………………………………..

 

 

 

 

 

 

۵

 

 

معرفی سیستم پیشرانش…………………………………………………….

 

 

۱-۱-

 

 

 

 

۶

 

 

انواع تک­پیشرانه………………………………………………………………

 

 

۲-۱-

 

 

 

 

۸

 

 

مکانیسم تجزیه تک­پیشرانه هیدرازین……………….

 

 

 ۱-۲-۱ –

 

 

 

 

۹

 

 

مقدمات عمومی کاتالیست­ها………………………………………………………

 

 

۳-۱-

 

 

 

 

۱۰

 

 

خواص کاتالیست­ها………………………………………………………………..

 

 

۴-۱-

 

 

 

 

۱۰

 

 

ساخت کاتالیزورهای صنعتی……………………………………………………

 

 

۵-۱-

 

 

 

 

۱۱

مقالات و پایان نامه ارشد

 

 

 

فاکتورهای انتخاب پایه کاتالیزور…………………………………………………………………….

 

 

۶-۱-

 

 

 

 

۱۶

 

 

دسته­بندی سیستم­های کاتالیزوری…………………………………………………………………….

 

 

۷-۱-

 

 

 

 

۱۶

 

 

طبیعت کاتالیست­های ناهمگن………………………………………………………………………

 

 

۱-۷-۱-

 

 

 

 

۱۹

 

 

پارامترهای طراحی بستر کاتالیست………………………………………………………………..

 

 

۸-۱-

 

 

 

 

۲۰

 

 

فعالیت کاتالیست تجزیه هیدرازین…………………………………………………………….

 

 

۹-۱-

 

 

 

 

۲۲

 

 

شناسایی روش­های ساخت کاتالیستIr/γ-Al2O3 ………………………………………..

 

 

۱۰-۱-

 

 

 

 

۳۰

 

 

تحلیل روش­ها……………………………………………………………………………

 

 

۱۱-۱-

 

 

 

 

۳۳

 

 

مناسب­ترین روش ساخت کاتالیستIr/γ-Al2O3……………………………………………..

 

 

۱۲-۱-

 

 

 

 

۳۷

 

 

کاتالیست­های دو فلزی……………………………….  …………………………….

 

 

۱۳-۱-

 

 

 

 

۳۸

 

 

ساخت کاتالیست­های نیکل بر پایه آلومینا…………………………………………………………..

 

 

۱-۱۳-۱-

 

 

 

 

۳۹

 

 

سیستم تست کاتالیست……………………………………………………………………..

 

 

۱۴-۱-

 

 

 

 

۴۲

 

 

روش تحقیق………………………………………………………………………….

 

 

فصل دوم

 

 

 

 

۴۳

 

 

مواد مورد استفاده………………………………………………………………………

 

 

۱-۲-

 

 

 

 

۴۷

 

 

تجهیزات مورد استفاده……………………………………………

 

 

۲-۲-

 

 

 

 

۵۱

 

 

آنالیزهای انجام شده………………………………………………………………..

 

 

۳-۲-

 

 

 

 

۵۵

 

 

روش انجام آزمایشات………………………………………………………..

 

 

۴-۲-

 

 

 

 

۵۶

 

 

ساخت کاتالیست…………………………………………………………………………….

 

 

۱-۴-۲-

 

 

 

 

۵۸

 

 

روش تست کاتالیست………………………………………

 

 

۲-۴-۲-

 

 

 

 

۵۹

 

 

نتایج و بحث………………………………………………………….

 

 

فصل سوم

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ی نوشته‌ها


 
 
 
dth="719">
۶۰ تعیین درصد ایریدیوم……………………………. ……………………………………………………………………………………………. ۱-۳-
۶۲ تعیین PH……………………………………………………………………………………………………………………………………………… ۲-۳-
۶۲ ساخت کاتالیست…………………………………………………………………………………………………………………………………… ۳-۳-
۶۶ بررسی پارامترهای موثر برساخت کاتالیست………………………………………………………………………………………… ۴-۳-
۶۶ نتایج حاصل از آنالیز XRD………………………………………………………………………………………………………………….. ۵-۳-
۷۴ اندازه کریستال­ها در آنالیز XRD…………………………………………………………………………………………………………. ۶-۳-
۷۹ نتایج حاصل از آنالیزBET…………………………………………………………………………………………………………………….. ۷-۳-
۷۹ نتایج حاصل از آنالیزSEM……………………………………………………………………………………………………………………. ۸-۳-
۸۲ نتایج حاصل از آنالیزEDS…………………………………………………………………………………………………………………….. ۹-۳-
۸۳ نتایج حاصل از آنالیزTPR…………………………………………………………………………………………………………………….. ۱۰-۳-
۸۴ نتایج حاصل از آنالیزTEM……………………………………………………………………………………………………………………. ۱۱-۳-
۸۵ نتایج حاصل از انجام تست­های راکتوری……………………………………………………………………………………………… ۱۲-۳-
۸۵ شرایط عملیاتی هنگام تست راکتوری………………………………………………………………………………………………….. ۱-۱۲-۳-
۸۶ نتایج حاصل از انجام تست راکتوری و آنالیزUV………………………………………………………………………………….. ۲-۱۲-۳-
۹۶ نتیجه­گیری و پیشنهادات………………………………………………………………………………………………………………………  
۹۶ نتیجه­گیری…………………………………………………………………………………………………………………………………………….  
۹۷ پیشنهادات……………………………………………………………………………………………………………………………………………..  
۹۹   منابع
۱۰۲   پیوست­ها
۱۰۳ پیشرفت کاتالیستی تجزیه خودبخودی هیدرازین در کشورهای مختلف…………………………………………….. پیوستالف
۱۰۶ پیشرفت کاتالیستی تجزیه غیرخودبخودی هیدرازین در کشورهای مختلف………………………………………. پیوست ب
۱۰۷ نکات ایمنی مربوط به نمک هگزا کلرو ایریدیک اسید…………………………………………………………………………. پیوست ج
۱۰۸ نکات ایمنی مربوط به هیدرازین…………………………………………………………………………………………………………… پیوست د
۱۰۸ نمودار کالیبراسیون……………………………………………………………………………………………………………………………….. پیوست ه
۱۱۰ آنالیز BET …………………………………………………………………………………………………………………………………………… پیوست و
 [ 10:39:00 ب.ظ ]